
Final Exam — Functional Analysis (WBMA033-05)

Friday 5 April 2024, 11.45–13.45h

University of Groningen

Instructions

1. The use of calculators, books, or notes is not allowed.

2. All answers need to be accompanied with an explanation or a calculation: only
answering “yes”, “no”, or “42” is not sufficient.

3. If p is the number of marks then the exam grade is G = 1 + p/10.

Problem 1 (10 points)

The linear space C([0, 1],K) can be equipped with the following norms:

‖f‖1 =

∫ 1

0

|f(x)| dx and ‖f‖∞ = sup
x∈[0,1]

|f(x)|.

Are these norms equivalent? Motivate your answer.

Problem 2 (5 + 5 + (5 + 10) = 25 points)

Consider the following Banach space over C:

X =

{
f : R→ C : sup

x∈R
|f(x)| <∞

}
, ‖f‖ = sup

x∈R
|f(x)|.

For a fixed constant τ > 0 consider the following linear operator:

T : X → X, Tf(x) = f(x− τ).

(a) Show that if λ ∈ C is an eigenvalue of T , then |λ| = 1.

(b) Show that every λ ∈ C with |λ| = 1 is an eigenvalue of T . Hint: complex exponentials.

(c) Show in two different ways that T is not compact:

(i) By using properties of σ(T ).

(ii) By considering the sequence (Tfn) for a suitably chosen sequence (fn) in X.

Problem 3 (8 + 7 = 15 points)

Let X be a Hilbert space over C. Assume U, V ∈ B(X) are selfadjoint and UV = V U .
Define the operator T ∈ B(X) by T = U + iV .

(a) Show that ‖Tx‖2 = ‖Ux‖2 + ‖V x‖2 for all x ∈ X.

(b) Show that for V = I the operator T is injective and has a closed range.

Turn page for problems 4 and 5!
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Problem 4 (5 + (4 + 6) = 15 points)

(a) Formulate the uniform boundedness principle.

(b) Let X be a Hilbert space over K and let V ⊂ X be a nonempty subset.

(i) For a fixed v ∈ V define the linear map fv : X → K by fv(x) = 〈x, v〉. Show
that ‖fv‖ = ‖v‖.

(ii) Assume that for each x ∈ X there exists a constant Mx ≥ 0 such that

|〈v, x〉| ≤Mx for all v ∈ V.

Prove that the set V is bounded.

Problem 5 (12 + 5 + 8 = 25 points)

Let X be a normed linear space over K and assume that the vectors x1, x2 ∈ X are linearly
independent.

(a) Prove that the map (a1, a2) 7→ ‖a1x1 + a2x2‖ is a norm on K2.

(b) Prove that there exists a constant C > 0 such that

|3a1 − 5a2| ≤ C‖a1x1 + a2x2‖ for all (a1, a2) ∈ K2.

(c) Prove that there exists f ∈ X ′ such that

f(x1) = 3, f(x2) = −5, ‖f‖ ≤ C.

End of test (90 points)
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Solution of problem 1 (10 points)

If the two norms are equivalent, then there exist constants 0 < m ≤M such that

m‖f‖1 ≤ ‖f‖∞ ≤M‖f‖1

for all f ∈ C([0, 1],K).
(3 points)

Consider the sequence in C([0, 1],K) given by fn(x) = xn. For all n ∈ N we have

‖f‖1 =
1

n+ 1
and ‖f‖∞ = 1.

(3 points)

In particular, for all n ∈ N we have

1 ≤ M

n+ 1
.

(3 points)

Taking n→∞ gives 1 ≤ 0, which is obviously a contradiction. Therefore, the norms are
not equivalent.
(1 point)
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Solution of problem 2 (5 + 5 + (5 + 10) = 25 points)

(a) For all f ∈ X we have

‖Tf‖ = sup
x∈R
|(Tf)(x)| = sup

x∈R
|f(x− τ)| = sup

x∈R
|f(x)| = ‖f‖.

(3 points)

If Tf = λf for some nonzero f ∈ X, then

‖f‖ = ‖Tf‖ = ‖λf‖ = |λ| ‖f‖.

Dividing both sides by ‖f‖ gives |λ| = 1.
(2 points)

(b) If λ ∈ C satisfies |λ| = 1, then for some θ ∈ R we have λ = eiθ. Consider the
(nonzero!) function f : R→ C given by f(x) = e−iθx/τ . Then we have

(Tf)(x) = f(x− τ) = e−iθ(x−τ)/τ = eiθe−iθx/τ .

In other words, we have Tf = λf .
(5 points)

(c) (i) There are (at least) three ways we can use the spectrum to show that T is not
compact.

Method 1. If T is compact, then we can use a theorem that states that 0 ∈ σ(T )
when dimX = ∞. However, the operator S : X → X given by (Sf)(x) =
f(x + τ) satisfies ST = TS = I and is bounded. Therefore, T is invertible and
thus 0 ∈ ρ(T ). Therefore, T cannot be compact.
(5 points)

Method 2. In part (b) we have shown that λ = 1 is an eigenvalue of T . The
corresponding eigenspace consists of all τ -periodic functions and thus is infinite-
dimensional. Indeed, for all n ∈ N the functions fn(x) = sin(2nπx/τ) are
eigenfunctions and these functions are linearly independent.
(3 points)

However, compact operators have the property that eigenspaces corresponding
to nonzero eigenvalues must be finite-dimensional. Therefore, T cannot be com-
pact.
(2 points)

Method 3. If T is compact, then we can use a theorem that states that T can
only have countably many eigenvalues. However, from part (b) it follows that
T has uncountably many eigenvalues. Therefore, T cannot be compact.
(5 points)

(ii) For each n ∈ N define the following function:

fn(x) =

{
1 if x = nτ,

0 otherwise.

The sequence (fn) belongs to X and is bounded as ‖fn‖ = 1 for all n ∈ N.
(4 points)
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But if n 6= m we have ‖Tfn − Tfm‖ = ‖fn+1 − fm+1‖ = 1.
(3 points)

Therefore, the sequence (Tfn) does not have a convergent subsequence. We
conclude that T cannot be compact.
(3 points)

Remark. There are many possible examples that can be constructed in this way.
Take any function f ∈ X that vanishes outside an interval of length τ . Then
define the sequence (fn) in X by fn = T nf and proceed as above.
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Solution of problem 3 (8 + 7 = 15 points)

(a) The adjoint of T is given by

T ∗ = (U + iV )∗ = U∗ + (iV )∗ = U − iV.

(2 points)

This gives

T ∗T = (U − iV )(U + iV ) = U2 + i(UV − V U) + V 2 = U2 + V 2.

(2 points)

Finally, using that U and V are selfadjoint, gives

‖Tx‖2 = 〈Tx, Tx〉
= 〈x, T ∗Tx〉
= 〈x, (U2 + V 2)x〉
= 〈x, U2x〉+ 〈x, V 2x〉
= 〈Ux, Ux〉+ 〈V x, V x〉
= ‖Ux‖2 + ‖V x‖2.

(4 points)

(b) Method 1. If V = I, then part (a) gives ‖Tx‖2 = ‖Ux‖2 + ‖x‖2 ≥ ‖x‖2 and thus
‖Tx‖ ≥ ‖x‖ for all x ∈ X.
(1 point)

Recall the Closed Range Theorem, which states the following: if X and Y are Banach
spaces and T ∈ B(X, Y ), then the following statements are equivalent:

(i) There exists c > 0 such that ‖Tx‖ ≥ c‖x‖ for all x ∈ X.

(ii) The operator T is injective and its range is closed.

(4 points)

We can then apply this theorem with c = 1.
(2 points)

Method 2. If V = I, then part (a) gives ‖Tx‖2 = ‖Ux‖2 + ‖x‖2 ≥ ‖x‖2 and thus
‖Tx‖ ≥ ‖x‖ for all x ∈ X.
(1 point)

If Tx = 0, then x = 0 which shows that T is injective.
(1 point)

Let yn be a sequence in ranT such that yn → y. There exists a sequence (xn) in X
such that yn = Txn for all n ∈ N. Note that since (yn) is Cauchy, so is ‖xn‖ in view of
the inequality we have for T . But then xn → x for some x ∈ X since X is complete.
Finally, since T ∈ B(X) we have Txn → Tx. By uniqueness of limits we conclude
that y = Tx ∈ ranT and thus that ranT is closed.
(5 points)
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Solution of problem 4 (5 + (4 + 6) = 15 points)

(a) There are (at least) two formulations that can be given.

Formulation 1. Let X be a Banach space and let Y be a normed linear space. Let
F ⊂ B(X, Y ) and assume that

sup
T∈F
‖Tx‖ <∞ for all x ∈ X.

Then the elements T ∈ F are uniformly bounded:

sup
T∈F
‖T‖ <∞.

(5 points)

Formulation 2. Let X be a Banach space and let Y be a normed linear space. Let
F ⊂ B(X, Y ) and assume that

M =
{
x ∈ X : sup

T∈F
‖Tx‖ <∞

}
is nonmeager. Then the elements T ∈ F are uniformly bounded:

sup
T∈F
‖T‖ <∞.

(5 points)

(b) (i) For x ∈ X the Cauchy-Schwarz inequality gives |fv(x)| = |〈x, v〉| ≤ ‖x‖‖v‖,
which implies that

sup
x6=0

|fv(x)|
‖x‖

≤ ‖v‖.

(3 points)

For x = v we have
|fv(x)|
‖x‖

=
|〈v, v〉|
‖v‖

= ‖v‖.

Hence, ‖fv‖ = ‖v‖.
(1 point)

(ii) For any x ∈ X there exists a constant Mx ≥ 0 such that

|fv(x)| = |〈x, v〉| = |〈v, x〉| ≤Mx,

which implies that
sup
v∈V
|fv(x)| <∞ for all x ∈ X.

(3 points)

By part (a) and the uniform boundedness principle we have

sup
v∈V
‖v‖ = sup

v∈V
‖fv‖ <∞,

which implies that the set V is bounded.
(3 points)
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Solution of problem 5 (12 + 5 + 8 = 25 points)

(a) Write ‖(a1, a2)‖∗ = ‖a1x1 + a2x2‖. We have ‖(a1, a2)‖∗ ≥ 0 for all (a1, a2) ∈ K2.
(1 point)

Since ‖ · ‖ is a norm on X and x1 and x2 are linearly independent, it follows that

‖(a1, a2)‖∗ = 0 ⇒ ‖a1x1 + a2x2‖ = 0

⇒ a1x1 + a2x2 = 0

⇒ a1 = a2 = 0.

(3 points)

For any λ ∈ K and (a1, a2) ∈ K2 we have

‖λ(a1, a2)‖∗ = ‖(λa1, λa2)‖∗
= ‖λa1x1 + λa2x2‖
= |λ| ‖a1x1 + a2x2‖
= |λ| ‖(a1, a2)‖∗.

(4 points)

For any (a1, a2), (b1, b2) ∈ K2 we have

‖(a1, a2) + (b1, b2)‖∗ = ‖(a1 + b1, a2 + b2)‖∗
= ‖(a1 + b1)x1 + (a2 + b2)x2‖
= ‖(a1x1 + a2x2) + (b1x1 + b2x2)‖
≤ ‖a1x1 + a2x2‖+ ‖b1x1 + b2x2‖
= ‖(a1, a2)‖∗ + ‖(b1, b2)‖∗.

(4 points)

(b) There are at least two approaches that can be taken.

Method 1. Consider the linear subspace V = span {x1, x2} and define the linear map

f : V → K, f(a1x1 + a2x2) = 3a1 − 5a2,

Since linear maps between two finite-dimensional spaces are bounded there exists a
constant C > 0 such that

|3a1 − 5a2| = |f(a1x1 + a2x2)| ≤ C‖a1x1 + a2x2‖

for all (a1, a2) ∈ K2.
(5 points)

Method 2. We have |3a1 − 5a2| ≤ 3|a1|+ 5|a2| ≤ 5(|a1|+ |a2|).
(1 point)

Note that ‖(a1, a2)‖1 = |a1|+ |a2| is also a norm on K2.
(1 point)
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Since all norms on a finite-dimensional space are equivalent, there exists a constants
m,M > 0 such that

m‖(a1, a2)‖∗ ≤ ‖(a1, a2)‖1 ≤M‖(a1, a2)‖∗

for all (a1, a2) ∈ K2. Finally, let C = 5M .
(3 points)

(c) Consider the linear subspace V = span {x1, x2} and define the linear map

f : V → K, f(a1x1 + a2x2) = 3a1 − 5a2,

so that f(x1) = 3 and f(x2) = −5.
(2 points)

In addition, by part (b) we have for all (a1, a2) ∈ K2 that

|f(a1x1 + a2x2)| = |3a1 − 5a2| ≤ C‖a1x2 + a2x2‖.

This implies that

‖f‖V ′ = sup
v∈V \{0}

|f(v)|
‖v‖

≤ C.

(6 points)

By the Hahn-Banach theorem there exists an extension of f (again denoted by f) to
the entire space X which preserves the operator norm: ‖f‖X′ = ‖f‖V ′ ≤ C.
(2 points)
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